ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 4.

Расчёт структурных характеристик вариационного ряда распределения.

Студент должен:

знать:

-   область применения и методику расчёта структурных средних величин;

уметь:

-   исчислять структурные средние величины;

-   формулировать вывод по полученным результатам.

Методические указания

В статистике исчисляются мода и медиана, которые относятся к структурным средним, так как  их величина зависит от строения статистической совокупности.

Расчёт моды

Модой называется значение признака (варианта), чаще всеговстречающееся в изучаемой совокупности. В дискретном ряду распределения модой будет варианта с наибольшей частотой.

Например: Распределение проданной женской обуви по размерам характеризуется следующим образом:

Размер обуви

34

35

36

37

38

39

40

41

Количество проданных пар

8

19

34

108

72

51

6

2

В этом ряду распределения  модой является 37 размер, т.е. Мо=37 размер.

Для интервального ряда распределения мода определяется по формуле:

где ХMo - нижняя граница модального интервала;

hMo  - величина модального интервала;

fMo – частота модального интервала;

fMo-1  и  fMo+1 – частота интервала соответственно

предшествующего модальному и следующего за ним.

Например: Распределение рабочих по стажу работы характеризуется следующими данными.

Стаж работы, лет

до 2

2-4

4-6

6-8

8-10

10 и более

Число рабочих, чел.

4

23

20

35

11

7

Определить моду интервального ряда распределения.

Мода интервального ряда составляет

Мода всегда бывает несколько неопределённой, т.к. она зависит от величины групп и точного положения границ групп. Мода широко применяется в коммерческой практике при изучении покупательского спроса, при регистрации цен и т.п.

Расчёт медианы

Медианой в статистике называется варианта, расположенная в середине упорядоченного ряда данных, и которая делит статистическую совокупность на две равные части так, что у одной половины значения меньше медианы, а у другой половины – больше её. Для определения медианы необходимо построить ранжированный ряд, т.е. ряд в порядке возрастания или убывания индивидуальных значений признака.

В дискретном упорядоченном ряду с нечётным числом членов медианой будет варианта, расположенная в центре ряда.

Например: Стаж пяти рабочих составил 2, 4, 7, 9 и 10 лет. В таком ряду медиана-7 лет, т.е. Ме=7 лет

Если дискретный упорядоченный ряд состоит из чётного числа членов, то медианой будет средняя арифметическая из двух смежных вариант, стоящих в центре ряда.

Например: Стаж работы шести рабочих составил 1, 3, 4, 5, 10 и 11лет. В этом ряду имеются две варианты, стоящие в центре ряда. Это варианты 4 и 5. Средняя арифметическая из этих значений и будет медианой ряда

 

Чтобы определить медиану для сгруппированных данных, необходимо считать накопленные частоты.

Например: По имеющимся данным определим медиану размера обуви

Размер обуви

Количество проданных пар

Сумма накопленных частот

34

8

8

35

19

8+19=27

36

34

27+34=61

37

108

61+108=169

38

72

-

39

51

-

40

6

-

41

2

-

Итого

300

 

Для определения медианы надо подсчитать сумму накопленных частот ряда. Наращивание итога продолжается до получения накопленной суммы  частот, превышающей половину суммы частот ряда. В нашем примере сумма частот составила 300, её половина – 150. Накопленная сумма частот получилась равной 169. Варианта, соответствующая этой сумме, т.е. 37 и есть медиана ряда.

Если же сумма накопленных частот против одной из вариант равна точно половине суммы частот ряда, то медиана определяется как средняя арифметическая этой варианты и последующей.

Например: По имеющимся данным определим медиану заработной платы рабочих

Месячная заработная плата, тысуб.

Число рабочих, чел.

Сумма накопленных частот

14,0

2

2

14,2

6

2+6=8

16,0

12

8+12=20

16,8

16

-

18,0

4

-

Итого:

40

-

Медиана будет равна:

Медиана интервального вариационного ряда распределения определяется по формуле:

Где  ХМе – нижняя граница медианного интервала;

hMe – величина медианного интервала;

f  - сумма частот ряда;

fМе – частота медианного интервала;

Например: По имеющимся данным о распределении предприятий по численности промышленно – производственного персонала рассчитать медиану в интервальном вариационном ряду

Группы предприятий по численности ППП, чел.

Число предприятий

Сумма накопленных частот

100-200

1

1

200-300

3

1+3=4

300-400

7

4+7=11

400-500

30

11+30=41

500-600

19

-

600-700

15

-

700-800

5

 

Итого:

80

 

Определим, прежде всего, медианный интервал. В данном примере сумма накопленных частот, превышающих половину суммы всех значений ряда, соответствует интервалу 400-500.Это и есть медианный интервал, т.е. интервал, в котором находится медиана ряда. Определим её значение

Если же сумма накопленных частот против одного из интервалов равна точно половине суммы частот ряда, то медиана определяется по формуле:

где n – число единиц в совокупности.

Например: По имеющимся данным о распределении предприятий по численности промышленно – производственного персонала рассчитать медиану в интервальном вариационном ряду

Группы предприятий по численности ППП, чел.

Число предприятий

Сумма накопленных частот

100-200

1

1

200-300

3

1+3=4

300-400

6

4+6=10

400-500

30

10+30=40

500-600

20

40+20=60

600-700

15

-

700-800

5

 

Итого:

80

 

чел

Моду и медиану в интервальном ряду можно определить графически:

моду в дискретных рядах - по полигону распределения, моду в интервальных рядах - по гистограмме распределения, а медиану - по кумуляте.

Мода интервального ряда распределения определяется по гистограмме распределения определяют следующим образом. Для этого выбирается самый высокий прямоугольник, который является в данном случае модальным. Затем правую вершину модального прямоугольника соединяем с правым верхним углом предыдущего прямоугольника. А левую вершину модального прямоугольника – с левым верхним углом последующего прямоугольника. Далее из точки их пересечения опускают перпендикуляр на ось абсцисс. Абсцисса точки пересечения этих прямых и будет модой распределения.

 

 

 

 

 

 

 

 

 

Медиана рассчитывается по кумуляте. Для её определения из точки на шкале накопленных частот (частостей), соответствующей 50%, проводится прямая, параллельная оси абсцисс, до пересечения с кумулятой. Затем из точки пересечения указанной прямой с кумулятой опускается перпендикуляр на ось абсцисс. Абсцисса точки пересечения является медианой.

Кроме моды и медианы в вариантных рядах могут быть определены и другие структурные характеристики – квантили. Квантили предназначены для более глубокого изучения структуры ряда распределения.

Квантиль – это значение признака, занимающее определенное место в упорядоченной по данному признаку совокупности. Различают следующие виды квантилей:

-      квартили  – значения признака, делящие упорядоченную совокупность на четыре равные части;

-      децили – значения признака, делящие упорядоченную совокупность на десять равных частей;

-      перцентели - значения признака, делящие упорядоченную совокупность на сто равных частей.

Таким образом, для характеристики положения центра ряда распределения можно использовать 3 показателя: среднее значение признака, мода, медиана. При выборе вида и формы конкретного показателя центра распределения необходимо исходить из следующих рекомендаций:

-                 для устойчивых социально-экономических процессов в качестве показателя центра используют среднюю арифметическую. Такие процессы характеризуются симметричными распределениями, в которых ;

-                 для неустойчивых процессов положение центра распределения характеризуется с помощью Mo или Me. Для асимметричных процессов предпочтительной характеристикой центра распределения является медиана, поскольку занимает положение между средней арифметической и модой.

 

 

Hosted by uCoz